ITC is the world’s premier conference dedicated to electronics test. This year’s ITC continues with its mission to play a unique role as an information sharing forum, where the wide range of its offerings allows ITC participants to learn, network and conduct business. This year’s program includes a top-notch technical program, vibrant exhibitors, information-packed tutorials, interactive technical panels, two focused workshops, as well as the all-important networking that these events can provide. The technical program has been designed to optimize personal interactions on all levels. This year’s program will include papers from a pool of impressive submissions and solicited papers. Of these submissions, a large number will focus on AI, automotive, memory, and hardware security. In complement to the paper presentations, there will be special sessions on hardware security certification, chiplet integration, silicon lifecycle management, computing in memory, as well as design and test of high-power compound devices and quantum electronics.

We are continuing and expanding on the inclusion of the Industrial Practice papers sessions as ITC has a very strong focus on industry practice as well as industry and academia advances. The three keynotes will encompass the past, present and future of our industry. In addition, there will be a visionary talk on AI accelerators.

ITC 2022 features a vibrant exhibition showcasing relevant companies. The exhibition will serve as a convenient one-stop-shop for all the elements of test technology.

In the past 53 years, ITC has helped globalize our industry and wants to continue to do so in the future. This year’s return to a live event will enable us to embrace all the features of the conference we have missed such as personal interaction.

ADMISSION TO ITC AND TEST WEEK ACTIVITIES
A personal registration badge is required for admission to all Test Week™ Activities.

LOCATION OF EVENTS
ITC Test Week 2022 events will take place at the Disneyland Hotel, Anaheim, CA. Check the Technical Session listings for session locations.

PANEL SESSIONS
ITC encourages the free exchange of ideas in panel sessions. Opinions in these sessions are often in a formative stage and do not represent completed work or the official position of the speaker or of his or her company. Panel sessions are “off the record”—what is said in them is not for quotation or attribution. Tape recorders and cameras are not permitted.

PHOTOGRAPHY AND RECORDINGS
Attendance at, or participation in, this conference constitutes consent to the use and distribution by IEEE of the attendee’s image or voice for informational, publicity, promotional and/or reporting purposes in print or electronic communications media.

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of IEEE.

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled as confidential and/or proprietary.

<table>
<thead>
<tr>
<th>REGISTRATION FOR ALL EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITC registration counter at the Disneyland Hotel</td>
</tr>
<tr>
<td>Sunday: 7:30 am – 3:00 p.m.</td>
</tr>
<tr>
<td>Tuesday: 8:00 a.m. – 6:00 p.m.</td>
</tr>
<tr>
<td>Thursday: 8:00 a.m. – 3:00 p.m.</td>
</tr>
<tr>
<td>Registration is closed 12:00 – 1:00 p.m. Tuesday – Thursday, 11:00 a.m. – 1:00 p.m. Sunday, Monday</td>
</tr>
</tbody>
</table>
HIGHLIGHTS

TTTC TUTORIALS
TTTC presents 12 half-day tutorials on Sunday and Monday.

MONDAY PANEL
An Industry-wide Dialog on Chiplets and Heterogeneous Integration

KEYNOTE TALKS
Keynotes on Tuesday, Wednesday and Thursday.

VISIONARY TALKS
One Visionary Talk Wednesday.

TECHNICAL SESSIONS
22 technical paper sessions Tuesday – Thursday

SPECIAL SESSIONS
10 special sessions Tuesday – Thursday

ITC WELCOME RECEPTION
All ITC registered full-conference attendees and exhibitors are invited to attend on Tuesday from 6:00 p.m. to 8:00 p.m.

POSTER SESSIONS
View 36 posters in the exhibit hall.

CORPORATE FORUM
The latest technical innovations from our exhibitors and corporate supporters.

WORLD-CLASS EXHIBITS
See the latest technology on the exhibit floor.

EXHIBITS PASSPORT PROGRAM
Visit company booths to be eligible for prizes.

COMPLIMENTARY EXHIBIT HALL LUNCHES
Tuesday, Wednesday and Thursday for full-conference and one-day conference registrants.

WORKSHOPS
TTTC presents two two-day workshops on Thursday and Friday.

FRINGE TECHNICAL MEETINGS
TTTC committees and standards working groups.

TABLE OF CONTENTS

Awards – Paper and TTTC, ITC Committees
Disney Convention Center Map
Tuesday Corporate Forum
Wednesday Corporate Forum
Exhibitor Booth Index
Exhibitor Profiles
Exhibitor Ads: Start Here
Exhibit Hours.......................... see below
Exhibits Passport
Exhibit Hall Map
Fringe Meetings
General Informationprevious page
Highlightsthis page
Tuesday Keynote
Wednesday Keynote and Visionary Talk
Thursday Keynote
Panels: 1, 2, 3, 4
Plenary Session/Keynote
Post-Panel Reception
Posters
Proceedings Distribution
Registration Hours
Technical Papers: Tuesday, Wednesday, Thursday
Test Week At-a-Glance
Tutorials
Workshops
Welcome Reception

DAILY EXHIBIT HOURS

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>10:30 a.m. – 5:30 p.m.</td>
</tr>
<tr>
<td>Wednesday</td>
<td>9:30 a.m. – 4:30 p.m.</td>
</tr>
<tr>
<td>Thursday</td>
<td>9:30 a.m. – 1:00 p.m.</td>
</tr>
</tbody>
</table>

Complimentary lunch
Tuesday, Wednesday and Thursday in the exhibit hall for full- and one-day ITC conference registrants.

Free exhibits entry every day (Registration required - lunch not included)
Corporate Supporters

Diamond

SIEMENS

Platinum

Gold

Silver

Sponsors

IEEE Philadelphia Section

IEEE Computer Society
The Tutorials and Education Group of the IEEE Computer Society Test Technology Technical Council (TTTC) organizes a comprehensive set of Test Technology Educational Program (TTEP) tutorials. TTEP offers fundamental education and expert knowledge in state-of-the-art test technology topics and also the opportunity to earn official certification from IEEE TTTC under the TTEP program.

The following 12 half-day tutorials qualify for credit towards IEEE TTTC certification.

Tutorials are a half-day in length. **One-Day** tutorial registration fee is for two tutorials—a morning tutorial and afternoon tutorial, both on the same day, e.g., Tutorial 1 and Tutorial 4 on Sunday. You may register for up to four tutorials (two consecutive on Sunday and two consecutive on Monday). **All-Access Pass** tutorial registration provides in-and-out access to all twelve tutorials over both days.

For more information, inquire at the registration counter. *Room assignments are subject to change. Please see the digital monitors for the latest information.*

Sunday 8:30 a.m. – 12:00 p.m.

TUTORIAL 1 Magic Kingdom Ballroom 1
Dependability and Testability of AI Hardware
F. Su, H. Stratigopoulos, Y. Makris

TUTORIAL 2 Magic Kingdom Ballroom 3
Early System Reliability Analysis for Cross-layer Soft Errors
A. Bosio, S. Di Carlo, A. Salvino

TUTORIAL 3 Magic Kingdom Ballroom 4
Device-Aware Test for Emerging Memories
S. Hamdioui

Monday 8:30 a.m. – 12:00 p.m.

TUTORIAL 7 Magic Kingdom Ballroom 1
Silicon Lifecycle Management for Emerging SOCs
Y. Zorian, F. Massoudi

TUTORIAL 8 Magic Kingdom Ballroom 3
Testing and Monitoring of Die-2-Die Interconnects in 2.5D/3D IC
S.-Y. Huang

TUTORIAL 9 Grand Ballroom North B
Domain-Specific Machine Learning in Semiconductor Test
L.-C. Wang

Sunday 1:00 p.m. – 4:30 p.m.

TUTORIAL 4 Magic Kingdom Ballroom 1
Computation in Memory: Technologies, Design, Test and Reliability
M. Tahoori

TUTORIAL 5 Magic Kingdom Ballroom 3
Mixed-Signal DFT and BIST: Trends, Principles and Solutions
S. Sunter

TUTORIAL 6 Grand Ballroom North B
Scan Test Escapes, New Fault Models, and the Effectiveness of Functional System Level Tests
A. Singh

Monday 1:00 p.m. – 4:30 p.m.

TUTORIAL 10 Magic Kingdom Ballroom 1
Automotive Safety, Reliability and Test Solutions
R. Mariani, Y. Zorian

TUTORIAL 11 Magic Kingdom Ballroom 3
SoC Security Verification
M. Tahoori, F. Farahmandi

TUTORIAL 12 Grand Ballroom North B
Advances in Defect-Oriented Testing
A. Singh, A. Glowatz

Tutorial attendees receive study material, breaks and lunches on the days attended. Tutorial registration, coffee and pastry are available at 7:30 a.m. on Sunday and Monday. Lunch is served from 12:00 p.m. to 1:00 p.m.
An Industry-wide Dialog on Chiplets and Heterogeneous Integration

Moderator: Phil Nigh

Three short presentations will be followed by a dialog with the audience. The goal: to gather feedback on the HR roadmap projections and about current and future test standards.

Panelists:
- Jeff Rearick (AMD) on chiplet trends and drivers
- Yervant Zorian, Synopsys on UCIe
- Ken Butler (Advantest) on HIR

Post-panel reception follows 6:00 p.m. – 7:30 p.m.

Following this panel on Monday afternoon, stick around for a reception to carry on the lively discussion. Meet us at the Adventure Lawn for some networking over libations and hors d’oeuvres.

Tomorrow (Tuesday)

Continental breakfast: 8:00 a.m.
Plenary: 9:00 a.m.
Exhibits open: 10:30 a.m. – 5:30 p.m.
Corporate forum: 11:30 a.m.
Exhibit hall lunch: 12:00 p.m.
Technical sessions: 2:00 p.m.
ITC Welcome Reception: 6:00 p.m. – 8:00 p.m.

ITC 2022 PROCEEDINGS DISTRIBUTION

ITC Proceedings Are Delivered Electronically

All ITC full-conference and one-day attendees, including students, will receive access to the 2022 ITC online proceedings free of charge.

Preregistered Full-Conference Attendees
All preregistered full-conference attendees should have received an email containing a proceedings download link a few days before the conference. The ITC 2022 technical presentations will be available at the Underline site for ITC. Information on how to access them will be provided to all registrants before the conference.

Onsite Full-Conference and One-Day Attendees
Full-conference and one-day attendees registering onsite will receive the links at the time of registration.
<table>
<thead>
<tr>
<th>Time</th>
<th>Tutorial 1: Dependability and Testability of AI Hardware</th>
<th>Tutorial 2: Early System Reliability Analysis for Cross-layer Soft Errors</th>
<th>Tutorial 3: Device-Aware Test for Emerging Memories</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 a.m. – 12:00 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 p.m. – 4:30 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 a.m. – 12:00 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 p.m. – 4:30 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Tutorial 7: Silicon Lifecycle Management for Emerging SOCs</th>
<th>Tutorial 8: Testing and Monitoring of Die-2-Die interconnects in 2.5D/3D IC</th>
<th>Tutorial 9: Domain-Specific Machine Learning in Semiconductor Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 a.m. – 12:00 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 p.m. – 4:30 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 a.m. – 12:00 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 p.m. – 4:30 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30 p.m. – 6:00 p.m.</td>
<td></td>
<td></td>
<td>Panel 1 - An Industry-wide Dialog on Chiplets and Heterogeneous Integration</td>
</tr>
</tbody>
</table>

<p>| Time | Panel 1 - An Industry-wide Dialog on Chiplets and Heterogeneous Integration | |
|------------------|---|</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 a.m. – 10:30 a.m.</td>
<td>Plenary – Opening Session Keynote: Make Computing Count: Some Grand Opportunities for Testing, Parthasarathy Ranganathan, Google</td>
</tr>
<tr>
<td>10:30 a.m. – 5:30 p.m.</td>
<td>Exhibits</td>
</tr>
<tr>
<td>11:00 a.m. – 12:00 p.m.</td>
<td>Diamond Supporter Presentation</td>
</tr>
<tr>
<td>12:00 p.m. – 2:00 p.m.</td>
<td>Lunch and Corporate Forum</td>
</tr>
<tr>
<td>2:00 p.m. – 3:30 p.m.</td>
<td>Session A1 New Frontiers in Fault Modeling
Session B1 Innovation and Machine Learning I
Session C1 Diagnosis and Debug
Session D1 TTTC McCluskey PhD Competition
Session E1 Special Session Dedicated to the Memory T. W. Williams, W. Maly and D. Pradhan</td>
</tr>
<tr>
<td>3:30 p.m. – 4:00 p.m.</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>4:00 p.m. – 5:30 p.m.</td>
<td>Session A2 Panel 2 Are Last Century’s Test Techniques Suitable for 21st Century Silent Errors?
Session B2 Innovation with Machine Learning II
Session C2 New Frontiers in Test Content Optimization
Session D2 Test of HW Accelerators I
Session E2 Special Session: Experiences in Silicon Lifecycle Management</td>
</tr>
<tr>
<td>6:00 p.m. – 8:00 p.m.</td>
<td>ITC Welcome Reception – Adventure Lawn</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>9:00 a.m. – 10:30 a.m.</td>
<td>Plenary Session

Keynote: The Future of High-Performance Computing Beyond Moore’s Law, John Shalf, Lawrence Berkeley National Labs

Visionary Talk: Ultra Low-Power AI Accelerators for AIoT, Tim Cheng, The Hong Kong University of Science and Technology</td>
</tr>
<tr>
<td>9:30 a.m. – 4:30 p.m.</td>
<td>Exhibits</td>
</tr>
<tr>
<td>10:30 a.m. – 11:00 a.m.</td>
<td>Coffee Break and Corporate Forum</td>
</tr>
<tr>
<td>11:00 a.m. – 12:30 p.m.</td>
<td>Session A3
Hardware Security I

Session B3
Latest on Wafer Map Analytics

Session C3
Memory Test/Diagnosis

Session D3
Special Session on Compute-In-Memory

Session E3
Industrial Practices I</td>
</tr>
<tr>
<td>12:30 p.m. – 2:30 p.m.</td>
<td>Lunch, Posters and Corporate Forum</td>
</tr>
<tr>
<td>2:30 p.m. – 4:00 p.m.</td>
<td>Session A4
Hardware Security II

Session B4
Test of HW Accelerators II

Session C4
Memory Test/Repair

Session D4
Automotive I

Session E4
Industrial Practices II</td>
</tr>
<tr>
<td>4:00 p.m. – 4:30 p.m.</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>4:30 p.m. – 6:00 p.m.</td>
<td>Session A5
Special Session on HW Security Certification

Session B5
Analogue Testing

Session C5
Panel 3: Performing RAS in Today’s Mission Critical Systems

Session D5
Automotive: Special Session on High-Power Electronics

Session E5
Analogue Test, Diagnosis, Test Cost, All-In-One</td>
</tr>
</tbody>
</table>

Table of Contents
THURSDAY, SEPTEMBER 29 – TECHNICAL SESSIONS

<table>
<thead>
<tr>
<th>Time</th>
<th>Session A6</th>
<th>Session B6</th>
<th>Session C6</th>
<th>Session D6</th>
<th>Session E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 a.m. – 10:00 a.m.</td>
<td>Special Session on Test of Quantum Circuits</td>
<td>Scan-Based Learning and Diagnosis</td>
<td>Special Session: Road to Chiplets: UCle</td>
<td>Automotive II</td>
<td>Industrial Practices III</td>
</tr>
<tr>
<td>10:00 a.m. – 10:30 a.m.</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 a.m. – 12:00 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 p.m. – 1:30 p.m.</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30 p.m. – 3:00 p.m.</td>
<td>Session A7 Test Generation</td>
<td>Session B7 Low Power and Test</td>
<td>Session C7 Special Session: Design-for-Verification (DfV): A New Direction in Design Qualification</td>
<td>Session D7 Panel 4: Automotive Safety & Security Interoperability</td>
<td>Session E7 Special Session: Industrial Practices from ITC India</td>
</tr>
</tbody>
</table>

Plenary Session

Keynote: What Did We Learn in 120 Years of DFT and Test? *Grady Giles, Mike Bienek, & Tim Wood, AMD*

THURSDAY, SEPTEMBER 29 – WORKSHOPS

<table>
<thead>
<tr>
<th>Time</th>
<th>Session A7</th>
<th>Session B7</th>
<th>Session C7</th>
<th>Session D7</th>
<th>Session E7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 p.m. – 6:30 p.m.</td>
<td>ART 2022: IEEE Automotive Reliability and Test & Safety Workshop 2022</td>
<td>Low Power and Test</td>
<td>Design-for-Verification (DfV): A New Direction in Design Qualification</td>
<td>Automotive II</td>
<td>Industrial Practices from ITC India</td>
</tr>
</tbody>
</table>

FRIDAY, SEPTEMBER 30 – WORKSHOPS

<table>
<thead>
<tr>
<th>Time</th>
<th>Session A7</th>
<th>Session B7</th>
<th>Session C7</th>
<th>Session D7</th>
<th>Session E7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 a.m. – 4:00 p.m.</td>
<td>ART 2022: IEEE Automotive Reliability and Test & Safety Workshop 2022</td>
<td>Low Power and Test</td>
<td>Design-for-Verification (DfV): A New Direction in Design Qualification</td>
<td>Automotive II</td>
<td>Industrial Practices from ITC India</td>
</tr>
</tbody>
</table>

2nd IEEE Intl Workshop on Silicon Lifecycle Management (SLM)

Plenary1: Opening, Keynote
Opening Remarks

Teresa McLaurin, ITC 2022 General Chair

Keynote Address 1

Make Computing Count: Some Grand Opportunities for Testing
Parthasarathy Ranganathan
VP/technical Fellow, Google

This talk will discuss the trends shaping the future computing landscape, with a specific focus on the role of testing -- for correctness, agility, and performance -- and some grand challenges, and opportunities, for the field.

About the speaker: Partha Ranganathan is currently a VP, technical Fellow at Google where he is the area technical lead for hardware and datacenters, designing systems at scale.

ITC Paper Awards

Theresa McLaurin, ITC 2021 Program Chair

ITC Ned Kornfield Best Paper Award
Exploiting Application Tolerance for Functional Safety
P. V. Pillai, R. Parekhji, Texas Instruments, India; B. Amrutur, Indian Institute of Science

Honorable Mentions

A Fast and Low Cost Embedded Test Solution for CMOS Image Sensors
J. Lefevre, P. Debaud, STM Microelectronics; P. Girard, A. Virazel, LIRMM Imaging Division, DFT University of Montpellier

Improving Volume Diagnosis and Debug with Test Failure Clustering and Reorganization
M-T Wu, C-S Kuo, J. C-M Li, National Taiwan University; C. Nigh, G. Bhargava, Qualcomm

TTTC Awards

Yervant Zorian

TTTC Life Time Contribution Medal
ITC/TTTC G. Gordon Student Service Award
TTTC Bob Madge Innovation Award

ITC 2022 Technical Program Introduction

Kuen-Jong Lee, ITC 2022 Program Chair

Closing Remarks

T. McLaurin, ITC 2022 General Chair

Table of Contents
The corporate forum allows you to stay on top of the latest commercial products in the semiconductor test industry and helps you understand how the innovations behind the products can add value to your work. In this interactive forum, ITC exhibitors and supporters will make presentations describing their company, its products and product roadmaps. Typical presentations include case studies, best practices and testimonials.

11:00 a.m.–12:00 p.m.
Disney Grand Ballroom Center

Siemens
Diamond Supporter Event

1. DFT to In-Life monitoring for dependable electronic systems. A. Gupta, Siemens
2. Reducing Design Effort, Test Time And Power With SSN in AWS Custom Silicon, D. Trock, Amazon
3. Advancements in DFT automation for 2.5D / 3D IC era, V. Neerkundar, Siemens
4. Structural Deterministic Test in Silicon Lifecycle, J. Rajski, Siemens

12:00 p.m.–2:00 p.m.
Exhibit Hall

12:00 p.m.
Synopsys

Test and Analytics: Enabling Silicon Lifecycle Management, R. Ruiz, Synopsys

12:30 p.m.
Advantest

Enabling Leading-Edge Technologies in an Exascale Era, K. Schaub, Advantest

1:30 p.m.
Chroma

Facing the Challenges in Automated Handling of Advanced IC Packaging, J. Hauck, Chroma

1:45 p.m.
Galaxy

Open Architecture and Democratized Data Systems: The Logical Evolution of Test Data Analytics, D. King, Galaxy
SESSION A1 Magic Kingdom Ballroom 1
New Frontiers in Fault Modeling
S. Adham (Chair)
A1.1 PEPR: Pseudo-Exhaustive Physical Region Testing
W. Li, D. Duvalsaint, R. Blanton*, Carnegie Mellon University; C. Nigh, Qualcomm Technologies, Inc.; S. Mitra, Stanford University
A1.2 Error Model- A New Way of Doing Fault Simulation
N. Saxena*, A. Lotfi, NVIDIA
A1.3 Using Custom Fault Modelling to Improve Understanding of Silicon Failures
S. Kundu*, The University of Texas at Dallas; G. Bhargava, L. Endrinal, L. Ranganathan, Qualcomm Technologies Inc

SESSION B1 Magic Kingdom Ballroom 2
Innovation with Machine Learning I
K. Butler (Chair)
B1.1 DeepTPI: Test Point Insertion with Deep Reinforcement Learning
Z. Shi*, M. Li, S. Khan, Q. Xu, The Chinese University of Hong Kong; L. Wang, Huawei Technologies Co., Ltd.; N. Wang, Y. Huang, Hisilicon
B1.2 Efficient and Robust Resistive Open Defect Detection Based on Unsupervised Deep Learning
Y. Liao*, Z. Najafi-Haghi, H-J. Wunderlich, B. Yang, University of Stuttgart
B1.3 RCANet: Root Cause Analysis via Latent Variable Interaction Modeling for Yield Improvement
X. Zhang*, E. Young, The Chinese University of Hong Kong; S. Hu, Z. Chen, S. Zhu, J. Hao, Huawei Noahs Ark Lab; P. Li, C. Chen, Y. Huang, HiSilicon

* Presenter
SESSION C1 Magic Kingdom Ballroom 3
Diagnosis and Debug
S-Y Huang (Chair)
C1.1 Scaling Physically Aware Logic Diagnosis to Complex High Volume 7nm Server Processors
B. Nandakumar*, S. Chillarige, M. Maheshwari, Cadence Design Systems; R. Redburn, J. Zimmerman, N. L'Esperance, E. Dziarcak, IBM
C1.2 Diagnosing Double Faulty Chains through Failing Bit Separation
C-S. Kuo, J-M. Li, B-H. Hsieh*, National Taiwan University; C. Nigh, M. Chern, G. Bhargava, Qualcomm Technologies Inc
C1.3 Transient Fault Pruning for Effective Candidate Reduction in Functional Debugging
D-A. Yang, National Tsing Hua University, Department of Electrical Engineering; J-J. Liou*, National Tsing Hua University, Department of Electrical Engineering; H. Chen, MediaTek Inc., Computing and AI Technology Group

SESSION D1 Magic Kingdom Ballroom 4
TTTC PhD Thesis Competition - Final Round
M. Portolan (Chair)
D1.1 Next Generation Design For Testability, Debug and Reliability Using Formal Techniques
S. Huhn*, University of Bremen; R. Drechsler, University of Bremen, Germany
D1.2 Testing of Analog Circuits using Statistical and Machine Learning Techniques
S. Srimani*, H. Rahaman, Indian Institute of Engineering Science and Technology
D1.3 AI-Driven Assurance of Hardware IP against Reverse Engineering Attacks
P. Charaborty*, S. Bhunia, University of Florida

SESSION E1 Grand Ballroom South AB
Special Session Dedicated To The Memory Of Tom W. Williams, Wojciech Maly and Dhiraj Pradhan
Y. Zorian (Chair)
E1.1 Wojciech Maly Memorial
A. Meixner, IBM; P. Nigh, Broadcom
E1.2 Tom W Williams Memorial
R. Mercer; S. Mitra, Stanford
E1.3 Dhiraj K Pradhan Memorial
A. Singh, Auburn U; S. Gupta, USC
SESSION A2 Magic Kingdom Ballroom 1
Panel: Are Last Century’s Test Techniques Suitable for 21st Century Silent Errors?
S. Chakravarty, Intel; S. Mitra, Stanford (Organizers)
J. Rearick (Moderator)
Panelists:
R. Govindaraju, Google
H. Dixit, Meta
P. Bose, IBM
S. Chakravarty, Intel
S. Mitra, Stanford

SESSION B2 Magic Kingdom Ballroom 2
Innovation with Machine Learning II
H.-P. Wen (Chair)
B2.1 Neural Fault Analysis for SAT-based ATPG
B2.2 Improving Test Quality of Memory Chips by a Decision Tree-Based Screening Method
B2.3 Fault Resilience Techniques for Flash Memory of DNN Accelerators
S.-K. Lu*, Y.-S. Wu, National Taiwan University of Science and Technology; J.-H. Hong, National University of Kaohsiung; K. Miyase, Kyushu Institute of Technology

SESSION C2 Magic Kingdom Ballroom 2
New Frontiers in Test Content Optimization
P. Song (Chair)
C2.1 Automatic Structural Test Generation for Analog Circuits using Neural Twins
J. Talukdar, A. Chaudhuri*, K. Chakrabarty, Duke University; M. Bhattacharya, Synopsys
C2.2 DEFCON: Defect Acceleration through Content Optimization
S. Natarajan*, A. Sathaye, C. Oak, N. Chaplot, S. Banerjee, Intel Corporation

SESSION D2 Magic Kingdom Ballroom 4
Test of HW Accelerators I
K. Chakravadhanula (Chair)
D2.1 A Multi-level Approach to Evaluate the Impact of GPU Permanent Faults on CNN’s Reliability
J. Rodriguez Condia*, J. Guerrero Balaguera, M. Sonza Reorda, Politecnico di Torino; F. Fernandes dos Santos, Institut National de Recherche en Sciences et Technologies du Numérique (INRIA); P. Rech, University of Trento
D2.2 Accelerating RRAM Testing with Low-cost Computation-in-Memory based DFT
A. Singh*, M. Fieback, R. Bishnoi, F. Bradaic, A. Gebregiorgis, S. Hamdioui, TU Delft; R. Joshi, IBM
D2.3 Compact Functional Test Generation for Memristive Deep Learning Implementations Using Approximate Gradient Ranking
S. Ahmed, Karlsruhe Institute Of Technology; M. Tahoori*, Karlsruhe Institute of Technology (KIT), Faculty of Informatik

SESSION E2 Grand Ballroom South AB
Special Session: Experiences in Silicon Lifecycle Management
Y. Zorian (Organizer)
Swapnil Bahl (Chair)
E2.1 In-Field System Debug and Silicon Life Cycle Management of Compute Systems
S. Menon, R. Kuehnis, R. Kandula, Intel
E2.2 Sensor Aware Production Testing
F. Massoudi, A. Patel, K. Darbinian, Y. Zorian, Synopsys
E2.3 Addressing System-Level Challenges for Power-On Self-Test
R. Kumar Tiwari, S. Tandon, M. Singla, S. Patil, Qualcomm
Join the party on Tuesday, September 27, from 6:30-8:30 PM. Reconnect with friends and colleagues for the first time in three years. Food and beverage for all registered attendees and exhibitors. The past two years we had to party virtually, now we can party for real.

Tomorrow (Wednesday)

- Continental breakfast: 8:00 a.m.
- Keynote and Visionary Talks: 9:00 a.m.
- Technical sessions: 11:00 a.m.
- Exhibits open: 9:30 a.m. – 4:30 p.m.
- Lunch, Poster Session and Corporate Forum: 12:30 a.m.
- Technical sessions: 2:30 p.m.
The Future of High-Performance Computing Beyond Moore’s Law
John Shalf
Lawrence Berkeley National Labs
J. Rearick (Chair)

There are a number of developments that will change how we will compute in 10 years: the foreseeable end of Moore’s law will lead to the exploration of new architectures and the introduction of new technologies in HPC; the rapid progress in machine learning in the last decade has led to a refocus of HPC towards large scale data analysis and machine learning; the feasibility of quantum computing has led to the introduction of new paradigms for scientific computing; meanwhile 30 billion IOT devices will push advances in energy efficient computing and bring an avalanche of data.

About the speaker: John Shalf is Department Head for Computer Science at Lawrence Berkeley National Laboratory, and recently was deputy director of Hardware Technology for the DOE Exascale Computing Project.

Visionary Talk
Ultra Low-Power AI Accelerators for AIoT – Compute-in-memory, Co-Design, and Heterogeneous Integration
Tim Cheng
The Hong Kong University of Science and Technology
K-J Lee, (Chair)

We will give an overview of the objectives and some recent progress in designing ultra-low-power AI accelerators for supporting a wide range of AIoT devices with powerful embedded intelligence and test.

About the speaker: Tim Cheng is currently Vice-President for Research and Development at Hong Kong University of Science and Technology (HKUST) and Chair Professor jointly in the Departments of ECE and CSE., music analysis/retrieval, image classification, medical/healthcare data analytics, and FinTech.
SESSION A3 Magic Kingdom Ballroom 1
Hardware Security I
J. Dworak (Chair)
A3.1 RTL-FSMx: Fast and Accurate Finite State Machine Extraction at the RTL for Security Applications
R. Kibria*, M. Rahman, F. Farahmandi, M. Tehranipoor, University of Florida
A3.2 TAMED: Transitional Approaches for LFI Resilient State Machine Encoding
M. Choudhury*, M. Gao, S. Tajik, D. Forte, University of Florida
A3.3 Reliability Study of 14 nm Scan Chains and Its Application to Hardware Security
F. Stellari, P. Song*, IBM

SESSION B3 Magic Kingdom Ballroom 2
Latest on Wafer Map Analytics
J. Li (Chair)
B3.1 Language Driven Analytics for Failure Pattern Feedforward and Feedback
M. Yang, Y. Zeng*, L-C. Wang, University of California Santa Barbara
B3.2 Wafer Map Defect Classification Based on the Fusion of Pattern and Pixel Information
Y. Liao*, P. Genssler, H. Amrouch, B. Yang, University of Stuttgart; R. Latty, Advantest Europe GmbH
B3.3 WXAI: Wafer Defect Pattern Classification with Explainable Rule Based Decision Tree Methodology
K-C. Cheng*, A-A. Huang, C-S. Lee, L-Y. Chen, P-Y. Liao, N-Y. Tsai, NXP Semiconductors Taiwan Ltd.; K-M. Li, National Sun Yat-Sen University; S-J. Wang, National Chung Hsing University
B3.4 Yield-Enhanced Probing Cleaning with AI-Driven Image and Signal Integrity Pattern Recognition for Wafer Test
N. Sinhabahu*, S. J. Wang, NXP Semiconductors Taiwan Ltd.; K-M. Li, National Sun Yat-Sen University; J-D. Li, S-J. Wang, National Chung Hsing University

SESSION C3 Magic Kingdom Ballroom 3
Memory Test/Diagnosis
S-K Lu (Chair)
C3.1 Fault Diagnosis for Resistive Random Access Memory and Monolithic Inter-tier Vias in Monolithic 3D Integration
S-C. Hung*, A. Chaudhuri, K. Chakrabarty, Duke University; S. Banerjee, Intel Corporation
C3.2 Fault Modeling and Testing of Memristor-Based Spiking Neural Networks
K-W. Hou*, H-H. Cheng, C. Tung, National Tsing Hua University; C-W. Wu, NTHU; J-M. Lu, Industrial Technology Research Institute
C3.3 Fault-coverage Maximizing March Tests for Memory Testing
R. Feng, Y. Lin, Y. Lou, L. Gao, V. Gera, B. Li, V. Chowdary Nekkanti, A. Rajendra Pharande, K. Sheth, M. Thommondru, G. Ye, University of Southern California; S. Gupta*, Purdue University
C3.4 Enhanced Data Pattern to Detect Defects in Flash Memory Address Decoder
J. Soh*, C. He, NXP Semiconductors

SESSION D3 Magic Kingdom Ballroom 4
Special Session on In-Memory Computing Design and Test Challenges
S. Adham, TSMC; S. Hamdioui, Delft, University (Organizers)
A. Adham (Chair)
D3.1 In-Memory Computing: History, Overview, Current and Future Directions
N. Shanbhag*, Univ. of Illinois
D3.2 Testing Computation-in-Memory Architectures Based on Memristive Devices
S. Hamdioui*, Delft, University
D3.3 Fully Digital Compute In Memory Design and Test challenges
S. Adham*, TSMC

* Presenter
SESSION E3

Industrial Practices I

P. Nigh (Chair)

E3.1 Application of Sampling in Industrial Analog Defect Simulation

M. Bhattacharya, B. Solignac, M. Durr*

Synopsys

E3.2 Challenges for High Volume Testing of Embedded IO Interfaces in Disaggregated Microprocessor Products

E. Garita-Rodriguez*, R. Rimolo-Donadio, R. Zamora-Salazar, Intel

E3.3 New R&R Methodology in Semiconductor Manufacturing Electrical Testing

A. Pagani, F. Brembilla*

STMicroelectronics

POSTERS

Wednesday, September 28

11:00 a.m. – 12:30 p.m.

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO.1</td>
<td>Neural Machine Translation for Test Language</td>
<td>S Go, SungKyunKwan University, Samsung Electronics</td>
<td></td>
</tr>
<tr>
<td>PO.2</td>
<td>Compositive Framework for Wafer Pattern Recognition with Confidence Relabeling Technique</td>
<td>L-Y Chen, Y-A Huang, C-S Lee, C-C Cheng, Y-Y Liao, L Chou J. Elwell, PNXP Semiconductors; S-M Li, National Sun Yat-Sen University; S-J Wang, National Chung Hsing University</td>
<td></td>
</tr>
<tr>
<td>PO.4</td>
<td>Teradyne’s PortBridge Software Expedites Silicon Bring-Up, Debug, Production Readiness and Foundry Feedback</td>
<td>R. Fanning, Teradyne; S. Molavi, Broadcom</td>
<td></td>
</tr>
<tr>
<td>PO.5</td>
<td>Bridging Repairability Gaps in Shared Bus Architecture with Shared Physical Memory Implementation</td>
<td>W. Pradeep, N. Karkare; Google</td>
<td></td>
</tr>
<tr>
<td>PO.6</td>
<td>Design-for-Diagnosis for Multiple Defects per Chain</td>
<td>E. Gizdarski, Y. Kanzawa, Synopsys</td>
<td></td>
</tr>
<tr>
<td>PO.7</td>
<td>Roadblocks and Strategy to the Reuse of Test Solutions for Analog and Mixed-Signal Blocks</td>
<td>P. Bauwens, R. Vanhooren, A. Coyette, W. Dobbelaeere, onsemi; G. Gielen, N. Xama, J. Gomez, KU Leuven</td>
<td></td>
</tr>
<tr>
<td>PO.8</td>
<td>Leveraging Existing High Speed Functional Serial Interfaces for Testing & Monitoring Silicon Throughout the Entire Lifecycle</td>
<td>R. Allen, A. Patel, Synopsys; K. Hilliges, Advantest; B. Tully, A. Pandey, Amazon</td>
<td></td>
</tr>
<tr>
<td>PO.9</td>
<td>Chiplet Level Test Parallelization for 3D Stacking Products</td>
<td>A. Margulis, T. Payakapan, J. Yuan, N.1 Pateli, A. Loh, AMD</td>
<td></td>
</tr>
<tr>
<td>PO.10</td>
<td>Pre-Analysis for ATPG Pattern Failures</td>
<td>D. Appello, D. Petrali, V. Tancorre, STMicroelectronics; G. Chan, R. Dokken, Roguevation</td>
<td></td>
</tr>
<tr>
<td>PO.11</td>
<td>Accelerating Design Cycle with DFT and Test Coverage Analysis at RTL</td>
<td>M. Arneson, Micron Technology; R. Singhal, S. Nandura, Synopsys</td>
<td></td>
</tr>
<tr>
<td>PO.12</td>
<td>Prediction of Total Jitter using Machine Learning for LVDS Output Characterization</td>
<td>P. L. Lee, Intel</td>
<td></td>
</tr>
<tr>
<td>PO.13</td>
<td>Enhanced Jitter Reduction for Multi-GHz ATE</td>
<td>D. Keezer, Eastern Institute for Advanced Study; D. Minier, Boreas Technologies</td>
<td></td>
</tr>
<tr>
<td>PO.14</td>
<td>Deploying Real-Time Machine Learning Applications with Deep Data at Test</td>
<td>M. Hutner, A. Burlak, A. Mittall, proteanTecs</td>
<td></td>
</tr>
<tr>
<td>PO.15</td>
<td>HBM3 Test/Debug Solution Supporting PHY-Mastered Interface of HBMPHY</td>
<td>H. Son, Y. Lim, D. Han, Samsung Foundry</td>
<td></td>
</tr>
<tr>
<td>PO.16</td>
<td>Enabling a Low Cost and High Quality Scan Test Methodology in 16nm FinFet Automotive Products</td>
<td>S. Traynor, J. T. Ng, R. Chen., NXP Semiconductor</td>
<td></td>
</tr>
</tbody>
</table>
PO.17 Ultra-Fast and Secure 5G Digital Pre-Distortion with ACS Edge
D. Belkin, O. Olansky, Intel; Y. Chen, K. Butler, K. Schaub, Advantest

PO.18 IR-Drop Improvement with Packet-Based Scan
J. Reynick, Siemens EDA; S. Alampally, Broadcom

PO.19 Investigation of Jitter Spur Impact on Eye Width Margin
O. Choong, W. C. Liew, Intel

PO.20 Improving Engineering Efficiency & Time to Market Through Multi-Variable Characterization
D. King, Galaxy Semiconductor

PO.21 Re-targeting Block-Level Patterns Using Top-Level On-Chip Clock Controller (OCC) --- An Industrial Case Study
Z. Zhong, S. Biswas, A. Wangoo, M. Bhattacharji, Marvell Semiconductor Inc; A. Gangwar, Synopsys

PO.22 Identical HW and SW for producton test and lab validation of modules
F. Haas, A. Matiz, ams-OSRAM

PO.23 Cell-Aware Test integration towards achieving 0 DPPB on automotive designs
N. K. S. Ramesh, R. Kaistha, J. K. Loh, G. S Clark, C. Ling, NXP Semiconductors

PO.24 A Novel Shift-left Method in Reducing Networking ASIC Customer Field DPM
K. A. Chuah, T. H. H. Tan, C. C. Tan, Intel

PO.25 LcPLL DTR: Recovering Yield Loss with Fusing and Graphics Driver
N. Wang-Lee, J. Abbas, K. L. Ng, H. Zhao, Y. Park, Intel

PO.26 An Application of Spatially Resolved Netlists to Graphical Error Detection
N. Taylor, J. Delozier, T. McDonley, K. Liszewski, B. Hayden, A. Kimura, Battelle Memorial Institute

PO.27 Low Cost, At-Speed Validation of I3C Target Design
P. Bansal, P. Bal, A. Kumari, STMicroelectronics

PO.28 ATE Integration of High Performance, High Data Rate 3rd Party Instruments
T. Lyons, Teradyne

PO.29 A Novel DFT [Design for Test] Clock Gating Technique to Reduce Power Consumption
A. Gangwar, F. Shukla, Synopsys; S. Murthy, P. Policke, Qualcomm

PO.30 Test Manufacturing Breakthroughs To Maximize Total Sellable Yield in 5G Network ASIC.
S. E. Wong, Intel

PO.31 A Breakthrough Manufacturing Solution - Array Erratic Fluctuation Predictive through Machine Learning Methods
N. H. Chun, T. Aik, Intel

PO.32 Advanced Core Wrapping for Power, Early Test Coverage and Automation
A. Gangwar, F. Shukla, K. Bachu, Synopsys

PO.33 Cell-Aware Test integration towards achieving 0 DPPB on automotive designs
N. K. S. Ramesh, R. Kaistha, J. K. Loh, G. S Clark, C. Ling, NXP Semiconductors

PO.34 A Novel DFT [Design for Test] Clock Gating Technique to Reduce Power Consumption
A. Gangwar, F. Shukla, Synopsys; S. Murthy, P. Policke, Qualcomm

PO.35 Design for test (DFT) Considerations when Designing Tile-based/abutted Physical Blocks
V. Neerkundar, Siemens

PO.36 Improving System Level Screening Efficiency Through Negative Voltage Margining
L.D. Rojas, J. Rodriguez, D. Wilhelmi, D. Lerner, Intel

PO.37 Built-In Self-Test architecture enabling diagnosis for massive Embedded Memory banks in large SoCs
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 a.m.</td>
<td>UNITES Systems</td>
</tr>
<tr>
<td></td>
<td>Testing SiC and GaN discrete semiconductors, O. Betak, UNITES Systems</td>
</tr>
<tr>
<td>10:40 a.m.</td>
<td>Xallent, Inc</td>
</tr>
<tr>
<td></td>
<td>Thin Films Testing Up to 300X Faster, Kwame Amponsah, Xallent</td>
</tr>
<tr>
<td>10:50 a.m.</td>
<td>yieldHUB</td>
</tr>
<tr>
<td></td>
<td>Revolutionize your yield management, C. S. Moore, yieldHub</td>
</tr>
<tr>
<td>1:30 p.m.</td>
<td>Chroma</td>
</tr>
<tr>
<td></td>
<td>High Multisite Testing for Hi Fidelity True Wireless Stereo (TWS) Devices, E. Lin, Chroma</td>
</tr>
<tr>
<td>1:45 p.m.</td>
<td>DR Yield</td>
</tr>
<tr>
<td></td>
<td>YieldWatchDog Solution for AI Test Data Analytics, K. Tropper, DR Yield</td>
</tr>
<tr>
<td>2:00 p.m.</td>
<td>Caliber Interconnect Solutions</td>
</tr>
<tr>
<td></td>
<td>Value Proposition - Caliber Interconnect Solutions, M. Berry, Caliber</td>
</tr>
<tr>
<td>2:15 p.m.</td>
<td>Roos Instruments, Inc.</td>
</tr>
<tr>
<td></td>
<td>Roos Cassini: Continuous Coverage to 110GHz, M. Roos, Roos</td>
</tr>
</tbody>
</table>
SESSION A4 Magic Kingdom Ballroom 1
Hardware Security II
P. Song (Chair)
A4.1 Modeling Challenge Covariances and Design Dependency for Efficient Attacks on Strong PUFs
H. Wang*, W. Liu, H. Jin, Y. Chen, W. Cai, Huazhong University of Science and Technology
A4.2 ADWIL: A Zero-Overhead Analog Device Watermarking Using Inherent IP Features
U. Das*, M. Muttaki, M. Tehranipoor, F. Farahmandi, University of Florida
A4.3 Circuit-to-Circuit Attacks in SoCs via Trojan-Infected IEEE 1687 Test Infrastructure
M. Portolan*, Univ Grenoble Alpes, CNRS; A. Pavlidis, H. Stratigopoulos, Sorbonne Université LIP6; G. Di Natale, CNRS; E. Faehn, ST Microelectronics
A4.4 Hardware Root of Trust for SSN-based DFT Ecosystems
J. Tyszer, B. Wlodarczak, Poznan University of Technology; J. Rajski*, M. Trawka, Siemens Digital Industries Software

SESSION B4 Magic Kingdom Ballroom 2
Test of HW Accelerators II
S. Gupta (Chair)
B4.1 Functional In-Field Self-Test for Deep Learning Accelerators in Automotive Applications
T. Uezono, Hitachi; Y. He*, Y. Li, University of Chicago
B4.2 Defect-Directed Stress Testing Based on Inline Inspection Results
C. He*, P. Grosch, O. Anilturk, J. Witowski, C. Ford, R. Kalyan, NXP Semiconductors; J. Robinson, D. Price, J. Rathert, B. Saville, KLA Corporation
B4.3 The Impact of On-chip Training to Adversarial Attacks in Memristive Crossbar Arrays
B. Paudel*, S. Tragoudas, Southern Illinois University, Carbondale
B4.4 RIBONN: Designing Robust In-Memory Binary Neural Network Accelerators
S. Kunda*, K. Basu, The University of Texas at Dallas; A. Malhotra, S. Gupta, Purdue University; A. Raha, Intel Corporation

SESSION C4 Magic Kingdom Ballroom 3
Memory Test/Repair
J. Yun (Chair)
C4.1 Configurable BISR Chain For Fast Repair Data Loading
W. Zou*, B. Nadeau-Dostie, Siemens EDA
C4.2 Efficient Built-In Self-Repair Techniques with Fine-Grained Redundancy Mechanisms for NAND Flash Memories
S-K. Lu*, S-C. Tseng, National Taiwan University of Science and Technology; K. Miyase, Kyushu Institute of Technology
C4.3 Analyzing the Electromigration Challenges of Computation in Resistive Memories
M. Mayahinia, Karlsruhe Institute of Technology (KIT); M. Tahoori*, Karlsruhe Institute of Technology (KIT), Faculty of Informatik; M. Perumkunnil, K. Croes, F. Catthoor, IMEC
C4.4 DFT-Enhanced Test Scheme for Spin-Transfer-Torque (STT) MRAMs
Z-W. Pan*, J-F. Li, National Central University
SESSION D4 Magic Kingdom Ballroom 4
Automotive I
P. Wohl (Chair)
D4.1 An innovative Strategy to Quickly Grade Functional Test Programs
D4.2 A Practical Online Error Detection Method for Functional Safety Using Three-Site Implications
K. Ioki*, ROHM Co., Ltd.; Y. Kai, K. Miyase, S. Kajihara, Kyushu Institute of Technology
D4.3 PPA Optimization of Testpoints in Automotive Designs

SESSION E4 Grand Ballroom South AB
Industrial Practices II
C-W Wu (Chair)
E4.1 Accurate Failure Rate Prediction Based on Gaussian Process Using WAT Data
M. Eiki*, M. Kajiyama, T. Nakamura, Sony Semiconductor Manufacturing; M. Shintani, Kyoto Institute of Technology; M. Inoue, Nara Institute of Science and Technology
E4.2 4.5Gsps MIPI D-PHY Receiver Circuit for Automatic Test Equipment
S. Lee*, C. Park, M. Kang, J. Won, H. Ryu, J. Choi, B. Yim, Samsung Electronics
E4.3 Optimization of Tests for Managing Silicon Defects in Data Centers
D. Lerner*, B. Inkley, S. Sahasrabudhe, E. Hansen, A. Van De Ven, Intel Corporation
E4.4 Improving Structural Coverage of Functional Tests with Checkpoint Signature Computation
B. Niewenhuis*, D. Varadarajan, Texas Instruments
E4.5 Zero Trust Approach to IC Manufacturing and Testing
B. Baras*, Advantest; C. Xanthopoulos, J. Kim, K. Butler, Advantest America Inc
E4.6 Virtual Prototyping: Closing the Digital Gap between Product Requirements and Post-Si Verification & Validation
T. Nirmaier*, M. Harrant, M. Huppmann, G. Pelz, Infineon Technologies
* Presenter
SESSION A5 Magic Kingdom Ballroom 1
Special Session on HW Security Certification
T-Y Chan (Chair)
A5.1 Latest Cybersecurity Regulations, Certifications and Labeling Trends
R. Menda-Shabat*, Winbond
A5.2 GlobalPlatform: 20 years of Security Evaluation on Secure Components,
G. Bernabeu*, GlobalPlatform
A5.3 Hardware Security in IoT Platforms and Certification
T.-Y. Chan*, Winbond

SESSION B5 Magic Kingdom Ballroom 2
Analog Testing
H. M. von Staudt (Chair)
B5.1 ML-Assisted Bug Emulation Experiments for Post-Silicon Multi-Debug of AMS Circuits
J-Y. Lei*, A. Chatterjee, Georgia Institute of Technology
B5.2 A Path Selection Flow for Functional Path Ring Oscillators using Physical Design Data
T. Kilian*, Infineon Technologies AG / Technical University of Munich; M. Hanel, U. Schlichtmann, Technical University of Munich; D. Tille, Infineon Technologies AG; M. Huch, Infineon Technology AG
B5.3 IEEE P1687.1: Extending the Network Boundaries for Test

SESSION C5 Magic Kingdom Ballroom 3
PANEL 3
Performing RAS in Today’s Mission Critical Systems
Y. Zorian (Organizer)
P. Benarditi (Moderator)
Panelists:
R. Kinger, Google
N. Saxena, Nvidi
H. Dixit, Meta
Y. Zorian, Synopsys

SESSION D5 Magic Kingdom Ballroom 4
Automotive: Special Session on High-Power Electronics
S.-Y. Huang, National Tsing Hua University (Organizer, Chair)
D5.1 The Importance and Demand Market of SiC Substrate Defect Testing,
W-C Chang*, Industrial Technology Research Institute
D5.2 Validation of SPICE Models for Commercial SiC MOSFETs
H-Y Teng*, Industrial Technology Research Institute
D5.3 Practice Design Experiences on a Multi-Voltage-Level Motor Driver System using a Power Inverter
C-C Chiu*, Industrial Technology Research Institute

SESSION E5 Grand Ballroom South AB
Analog Test, Diagnosis, Test Cost, All-In-One
A. Singh (Chair)
E5.1 Efficient Low Cost Alternative Testing of Analog Crossbar Arrays for Deep Neural Networks
K. Ma*, A. Saha, C. Amarnath, A. Chatterjee, Georgia Institute of Technology
E5.2 Low-Cost High Accuracy Stimulus Generator for On-chip Spectral Testing
E5.3 Optimal Order Polynomial Transformation for Calibrating Systematic Errors in Multisite Testing
P. Farayola*, I. Bruce, D. Chen, Iowa State University; A. Chaganti, A. Sheikh, S. Ravi, Texas Instruments
E5.4 Transforming an n-Detection Test Set into a Test Set for a Variety of Fault Models
I. Pomeranz*, Purdue University
E5.5 Improvements in the Automated IC Socket Pin Defect Detection
V. Thangamariappan*, N. Agrawal, C. C. Xanthopoulos, J. Kim, I. Leventhal, K. Butler, Advantest America; J. Xiao, Essai

E5.6 GreyConE: Greybox Fuzzing + Concolic Execution Guided Test Generation for High Level Designs
M. Debnath, S. Sur-Kolay*, Indian Statistical Institute; A Chowdhury, New York University; D. Saha, University of Calcutta

Tomorrow (Thursday)
Continental breakfast: 8:00 a.m.
Keynote Talk: 9:00 a.m.
Technical sessions: 10:30 a.m.
Exhibits open: 10:00 a.m. – 1:00 p.m.
Lunch: 12:00 p.m.
Technical sessions: 1:30 p.m.
Workshops: 3:30 p.m.

Fill in your Exhibit Hall Passport for Prizes
Keynote Address 3
What Did We Learn in 120 years of DFT and Test?

Grady Giles, Mike Bienek, & Tim Wood
AMD
Y. Zorian (Chair)

This interview-style discussion will feature three industry veterans whose careers have followed (and propelled) the growth in our field. We plan to reflect on how our industry has evolved, how this conference has reflected and driven that evolution, what lessons were learned, and what we can expect (and make happen) next. Along the way, we’ll share some anecdotes, tell some stories, brag about some accomplishments, and humbly give some advice on things we found out the hard way (so that you don’t have to).

About the speakers: Grady Giles, Mike Bienek, and Tim Wood are all members of the DFX team at AMD, with a combined 120+ years of experience in the industry.

Also in this session – announcement of the winner of the TTTC PhD Thesis Competition

<table>
<thead>
<tr>
<th>TECHNICAL SESSIONS</th>
<th>Thursday, September 29</th>
<th>10:30 a.m. – 12:00 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESSION A6 Magic Kingdom Ballroom 1</td>
<td>Special Session on Test of Quantum Circuits</td>
<td></td>
</tr>
<tr>
<td>J. Li, (Chair)</td>
<td>A6.1 Qubit fluctuations in quantum systems</td>
<td>M. Carroll*, IBM</td>
</tr>
<tr>
<td>A6.2 Introduction to Quantum Circuit Testing (from Test Engineer’s Perspective)</td>
<td>J. Li*, National Taiwan University</td>
<td></td>
</tr>
<tr>
<td>SESSION B6 Magic Kingdom Ballroom 2</td>
<td>Scan-Based Learning and Diagnosis</td>
<td>W-T Cheng (Chair)</td>
</tr>
<tr>
<td>B6.1 Scan-Based Test Chip Design with XOR-based C-testable Functional Blocks</td>
<td>Y-F. Chen, Dept. EE, National Cheng Kung University; D-Y. Kang*, Dept. EE, National Cheng Kung University; K-J. Lee, Dept. EE, National Cheng Kung University</td>
<td></td>
</tr>
<tr>
<td>B6.4 Runtime Fault Diagnostics for GPU Tensor Cores</td>
<td>S. Hukerikar*, N. Saxena, NVIDIA</td>
<td></td>
</tr>
</tbody>
</table>

SESSION C6 Magic Kingdom Ballroom 3
Special Session: Road to Chiplets: UCIe
Y. Zorian (Chair)

* Presenter
SESSION D6 Magic Kingdom Ballroom 4
Automotive II
C. He (Chair)
D6.1 Unsupervised Learning-based Early Anomaly Detection in AMS
Circuits of Automotive SoCs
A. Arunachalam*, A. Kizhakkayil,
University of Texas at Dallas; S. Kundu, K. Basu, The University of
Texas at Dallas; A. Raha, S. Banerjee, F. Su, Intel Corporation; X. Jin, NXP Semiconductors

D6.2 Just-Enough Stress Test for Infant-Mortality Screening Using Speed Binning
C-L. Tsai, S-Y. Huang*, National Tsing Hua University

D6.3 Existence of Single-Event Double-Node Upsets (SEDU) in Radiation-Hardened Latches for Sub-65 nm CMOS Technologies

SESSION E6 Grand Ballroom South AB
Industrial Practices III
K. Peng (Chair)
E6.1 Probeless DfT Concept for Testing 20k I/Os of an Automotive Micro-LED
Headlamp Driver IC
H. von Staudt*, Dialog Semiconductor - a Renesas Company; L. Elnawawy, Dialog
Semiconductor, A Renesas Company; S. Wang, Dialog Semiconductor, A Renesas Company; L. Ping, Dialog Semiconductor, A Renesas Company; J. Choi, Samsung Electronics

E6.2 Reusing IEEE 1687-Compatible Instruments and Sub-Networks over a System Bus
F. Ghani Zadegan, Z. Zhang, K. Petersen, Ericsson; E. Larsson*, Lund University

E6.3 Multi-die Parallel Test Fabric for Scalability and Pattern Reusability
A. Sinha*, Y. Cho, J. Easter, M. V. Leiva Rojas, Intel

SESSION A7 Magic Kingdom Ballroom 1
Test Generation
S-K Lu (Chair)
A7.1 Compression-Aware ATPG

A7.2 DIST: Deterministic In-System Test with X-masking
J. Tyszer, B. Wlodarczak, Poznan University of Technology; G. Mrugalski, J. Rajski*, Siemens Digital Industries Software

A7.3 Test Generation for an Iterative Design Flow with RTL Changes
J. Joe*, I. Pomeranz, Purdue University; N. Mukherjee, J. Rajski, Siemens Digital Industries Software

SESSION B7 Magic Kingdom Ballroom 2
Low-Power and Test
H.-P. Wen (Chair)
B7.1 Understand VDDmin Failures for Improved Testing of Timing Marginalities
A. Singh*, TU Delft

SESSION B7 Magic Kingdom Ballroom 2
Low-Power and Test
H.-P. Wen (Chair)
B7.2 Multiple Guard Bands for Low Power Consumption
W-C. Lin*, C-H. Hsieh, J-M. Li, C. Chen, National Taiwan University; E-W. Fang, MediaTek Inc.; S-Y. Hsueh, MediaTek Inc.

B7.3 Comprehensive Power-Aware ATPG Methodology for Complex Low-power Designs
L. Manchukonda*, E. Tsai, K. Abdel-Hafez, M. Dsouza, K. Natarajan, Synopsys; S. Lai, W. Hsueh, MediaTek
SESSION C7 Magic Kingdom Ballroom 3
Special Session: Design-for-Verification (DfV): A New Direction in Design Qualification
Y. Zorian (Organizer)
A. Majumdar (Moderator)
Presenter: D. Akselrod, AMD
Panelists:
 S. Millican, Auburn University
 S. Sunter, Siemens
 A. Sharma, Synopsys
 S. Huhn, University of Bremen

SESSION D7 Magic Kingdom Ballroom 4
Panel 4: Automotive Safety & Security Interoperability
Organizer: Nir Maor, QualComm
Moderator: Yervant Zorian, Synopsys
Panelists:
 • Sohrab Aftabjahani, Intel
 • Luca Di Mauro, Arm
 • Joytika Athavale, Nvidia
 • Nir Maor, Qualcomm
 • Jason M Fung, Intel
 • P. V. Pillai, Texas Instruments
 • Thiyagu Loganathan, Infineon

SESSION E7 Grand Ballroom South AB
Industrial Practices from ITC India
P. Wohl (Chair)
E7.1 TSV BIST Repair: Design-For-Test Challenges and Emerging Solution for 3D Stacked IC’s
S. Akkapolu, Vaishnavi G, S. R. Malige, AMD

E7.2 Selective Multiple Capture Test (SMART) XLBIST
P. Wohl*, J. Waicukauski, V. Kumar K S, A. Bhat, R. Karmakar, Synopsys

E7.3 Transfer-Matrix Abstractions to Analyze the Effect of Manufacturing Variations in Silicon Photonic Circuits
P. Agnihotri*, P. Kalla, S. Blair, The University of Utah
The ARTS workshop focuses exclusively on test, reliability and Safety of automotive and mission-critical electronics, including design, manufacturing, burn-in, system-level integration and in-field test, diagnosis and repair solutions, as well as architectures and methods for reliable and safe operations under different environmental conditions. With increasing system complexity, security, stringent runtime requirements for functional safety, and cost constraints of a mass market, the reliable operation of electronics in safety-critical domains is still a major challenge. This edition of the ARTS Workshop offers a forum to present and discuss these challenges and emerging solutions among researchers and practitioners alike.

Program Highlights:

- After the opening session of Thursday, Sundararajan Subramanian, Qualcomm Vice President, will give the first Keynote speech on “Journey from Mobile to Automobile: Leverage Learn Lead”.
- Friday will start with Vasanth Waran, Synopsys Senior Director, who will give the second Keynote speech on “Evolution and Trends driving the Automotive Architecture and Ecosystems of the future”.
- Four technical sessions will focus on:
 - Advanced BIST design
 - NVM oriented reliability
 - In-field testing
 - Simulation and fault simulation techniques.
- Technical sessions will be interleaved with a special session with a speech on “The Accellera Functional Safety Standard: enabling automation, interoperability and traceability” given by Alessandra Nardi, Accellera FS WG Chair.

General Chair: Yervant Zorian,
Program Chair: Paolo Bernardi
ART Web Page: http://art.ttc-events.org/
Second IEEE International Workshop on Silicon Lifecycle Management (SLM)
Magic Kingdom Ballroom 4

With increasing system complexity, security, stringent runtime requirements for functional safety, and cost constraints of a mass market, the reliable and secure operation of electronics in safety-critical, enterprise servers and cloud computing domains is still a major challenge. While traditionally design time and test time solutions were supposed to guarantee the in-field dependability and security of electronic systems, due to complex interaction of runtime effects from running workload and environment, there is a great need for a holistic approach for silicon lifecycle management, spanning from design time to in-field monitoring and adaptation. Therefore, the solutions for lifecycle management should include various sensors and monitors embedded in different levels of the design stack, access mechanisms and standards for such on-chip and in-system sensor network, as well as data analytics on the edge and in the cloud. The SLM Workshop offers a forum to present and discuss these challenges and emerging solutions among researchers and practitioners alike.

SLM include three keynote addresses and five technical sessions. See the SLM Web Page for the complete SLM Program.

General Chair: Yervant Zorian, zorian@synopsys.com
Program Chair: Mehdi Tahoori
SLM Web Page: https://people.rennes.inria.fr/Marcello.Traiola/SLM22/index.html

Workshop Registration for Both Workshops

All workshop participation requires registration. Workshop registration includes the opening address, technical sessions, digest of papers, workshop reception, break refreshments, continental breakfast and lunch. You may register onsite at regular rates at the ITC registration counter Admission for onsite registrants is subject to availability.

Workshop Reception
All registered workshop participants are invited to a reception to be held 7:00 p.m. – 9:00 p.m. on Thursday, September 29 at the Adventure Lawn.

Workshop Schedule
The workshops will all adhere to the same schedule:

Thursday, September 29
- Registration 7:30 a.m. – 5:00 p.m.
- Opening Address 4:00 p.m. – 5:00 p.m.
- Technical Sessions 5:00 p.m. – 6:30 p.m.
- Reception 7:00 p.m. – 9:00 p.m.

Friday, September 30
- Technical Sessions 8:00 a.m. – 4:00 p.m.

Note: Workshop schedule is subject to change
FRINGE TECHNICAL MEETINGS See registration desk for schedule.

Castle C
ITC STEERING COMMITTEE

Teresa. McLaurin, ARM, General Chair
Jennifer Dworak, Southern Methodist University, Past General Chair

ARRANGEMENTS
Jill Sibert, Raspberry Communications, Chair

EXHIBITS
Chen-huan Chiang, Intel, Chair

FINANCE
Kenneth Mandl, Chair

MARKETING
Ron Press, Siemens, Chair
Scott Davidson, Vice Chair

PLANNING
Gordon Roberts, McGill University, Chair
William Lowd, BZ International, Vice Chair

PROGRAM
Kuen-Jong Lee, National Cheng Kung University, Chair
Jeff Rearick, AMD, Vice Chair

TTTC WORKSHOPS AND TUTORIALS LIAISON
Yervant Zorian, Synopsys

MEMBERS
Shawn Blanton, Carnegie Mellon University
Anne Gattiker, IBM
Marc Hutner
Peter Maxwell
Li-C Wang, University of California, Santa Barbara

IEEE PHILADELPHIA SECTION REPRESENTATIVE
Peter Silverberg

TTTC REPRESENTATIVE
Peilin Song, IBM
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Adham</td>
<td>TSMC</td>
</tr>
<tr>
<td>S. A. Aftabjahani</td>
<td>Intel</td>
</tr>
<tr>
<td>E. Amyeen</td>
<td>Intel</td>
</tr>
<tr>
<td>L. Anghel</td>
<td>INP-TIMA Laboratory</td>
</tr>
<tr>
<td>D. Armstrong</td>
<td>Advantest</td>
</tr>
<tr>
<td>R. Arnold</td>
<td>Infineon Technologies</td>
</tr>
<tr>
<td>B. Becker</td>
<td>University of Freiburg</td>
</tr>
<tr>
<td>G. Bhargava</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>S. Blanton</td>
<td>CMU</td>
</tr>
<tr>
<td>K. Butler</td>
<td>Advantest</td>
</tr>
<tr>
<td>J. Carulli</td>
<td>GLOBALFOUNDRIES</td>
</tr>
<tr>
<td>K. Chakrabarty</td>
<td>Duke University</td>
</tr>
<tr>
<td>K. Chakravadhanula</td>
<td>Cadence Design Systems</td>
</tr>
<tr>
<td>A. Chatterjee</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>H. Chen</td>
<td>MidiaTek</td>
</tr>
<tr>
<td>V. Chickermane</td>
<td>Cadence Design Systems</td>
</tr>
<tr>
<td>G. Colon-Bonet</td>
<td>Intel</td>
</tr>
<tr>
<td>W. Dobbelare</td>
<td>ON Semiconductor</td>
</tr>
<tr>
<td>J. Dworak</td>
<td>Southern Methodist University</td>
</tr>
<tr>
<td>F. Farahmandi</td>
<td>University of Florida</td>
</tr>
<tr>
<td>F. Frederix</td>
<td>ARM</td>
</tr>
<tr>
<td>M. Fujita</td>
<td>University of Tokyo</td>
</tr>
<tr>
<td>A. Gattiker</td>
<td>IBM</td>
</tr>
<tr>
<td>P. Girard</td>
<td>LIRMM</td>
</tr>
<tr>
<td>S. Goel</td>
<td>TSMC</td>
</tr>
<tr>
<td>S. Goh</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>U. Guin</td>
<td>Auburn University</td>
</tr>
<tr>
<td>S. Gupta</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>S. Gupta</td>
<td>NVIDIA</td>
</tr>
<tr>
<td>M. Hashimoto</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>C. He</td>
<td>NXP</td>
</tr>
<tr>
<td>T.-Y. Hsieh</td>
<td>National Sun Yat-sen University</td>
</tr>
<tr>
<td>J.-L. Huang</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>S.-Y. Huang</td>
<td>National Tsing-Hua University</td>
</tr>
<tr>
<td>T.-C. Huang</td>
<td>National Changhua University</td>
</tr>
<tr>
<td>M. Inoue</td>
<td>Nara Inst. of Science and Tech.</td>
</tr>
<tr>
<td>M. Ishida</td>
<td>Advantest</td>
</tr>
<tr>
<td>Y. Iskander</td>
<td>Microsoft</td>
</tr>
<tr>
<td>H. Jiao</td>
<td>Peking University</td>
</tr>
<tr>
<td>Y. Jin</td>
<td>The University of Florida</td>
</tr>
<tr>
<td>R. Kapur</td>
<td>Synopsys</td>
</tr>
<tr>
<td>N. Karimi</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>R. Karri</td>
<td>Polytechnic Institute of NYU</td>
</tr>
<tr>
<td>H. Kobayashi</td>
<td>Gunma University</td>
</tr>
<tr>
<td>J. Lee</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>J-F Li</td>
<td>National Central University</td>
</tr>
<tr>
<td>X. Li</td>
<td>Chinese Academy of Science</td>
</tr>
<tr>
<td>Y. Li</td>
<td>University of Chicago</td>
</tr>
<tr>
<td>J-J. Liou</td>
<td>National Tsing Hua University</td>
</tr>
<tr>
<td>S.-K. Lu</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>Y. Makris</td>
<td>University of Texas at Dallas</td>
</tr>
<tr>
<td>EJ. Marinissen</td>
<td>IMEC</td>
</tr>
<tr>
<td>P. Maxwell</td>
<td></td>
</tr>
<tr>
<td>T. McLaurin</td>
<td>ARM</td>
</tr>
<tr>
<td>S. Natarajan</td>
<td>Intel</td>
</tr>
<tr>
<td>P. Nigh</td>
<td>Broadcom</td>
</tr>
<tr>
<td>P. Pant</td>
<td>Intel</td>
</tr>
<tr>
<td>R. Parekhji</td>
<td>Texas Instruments India</td>
</tr>
<tr>
<td>K. Peng</td>
<td>ARM</td>
</tr>
<tr>
<td>M. Portolan</td>
<td>TIMA</td>
</tr>
<tr>
<td>J. Raiski</td>
<td>Siemens</td>
</tr>
<tr>
<td>S. Ravi</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>G. Roberts</td>
<td>McGill University</td>
</tr>
<tr>
<td>O. Sinanoglu</td>
<td>New York University Abu Dhabi</td>
</tr>
<tr>
<td>P. Song</td>
<td>IBM</td>
</tr>
<tr>
<td>F. Su</td>
<td>Intel</td>
</tr>
<tr>
<td>M. Tahoori</td>
<td>Karlsruhe Institute of Technology</td>
</tr>
<tr>
<td>S. Teehan</td>
<td>IBM</td>
</tr>
<tr>
<td>M. Tehranipoor</td>
<td>Karlsruhe Institute of Technology</td>
</tr>
<tr>
<td>J. Tyszer</td>
<td>Poznan University of Technology</td>
</tr>
<tr>
<td>H. von Staudt</td>
<td>Dialog Semiconductor</td>
</tr>
<tr>
<td>H. Walker</td>
<td>Texas A&M University</td>
</tr>
<tr>
<td>Li-C. Wang</td>
<td>U. of California, Santa Barbara</td>
</tr>
<tr>
<td>S.-J. Wang</td>
<td>National Chung Hsing University</td>
</tr>
<tr>
<td>H.-P. Wen</td>
<td>National Chiao Tung University</td>
</tr>
<tr>
<td>X. Wen</td>
<td>Kyushu Institute of Technology</td>
</tr>
<tr>
<td>L. Winemberg</td>
<td>Intel</td>
</tr>
<tr>
<td>P. Wohl</td>
<td>Synopsys</td>
</tr>
<tr>
<td>C-W. Wu</td>
<td>National Tsing-Hua University</td>
</tr>
<tr>
<td>H-J. Wunderlich</td>
<td>University of Stuttgart</td>
</tr>
<tr>
<td>F. Zhang</td>
<td>Southern Methodist University</td>
</tr>
<tr>
<td>Y. Zorian</td>
<td>Synopsys</td>
</tr>
</tbody>
</table>
Program Committee Awards

Outstanding Contribution Awards in recognition of service to the IEEE International Test Conference Program Committee

<table>
<thead>
<tr>
<th>25 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shawn Blanton</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Rearick</td>
<td></td>
</tr>
<tr>
<td>Li-C Wang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>David Armstrong</td>
<td>Yiorgos Makris</td>
</tr>
<tr>
<td>John Caroli</td>
<td>Ozgur Sinanoglu</td>
</tr>
<tr>
<td>Masahiro Fujita</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Aitken</td>
<td>Rubin Parekhji</td>
</tr>
<tr>
<td>Abhijit Chatterjee</td>
<td>Srivaths Ravi</td>
</tr>
<tr>
<td>Vivek Chickermane</td>
<td>Srikanth Venkataraman</td>
</tr>
<tr>
<td>Jennifer Dworak</td>
<td>Xiaoqing Wen</td>
</tr>
<tr>
<td>Patrick Girard</td>
<td>LeRoy Winemberg</td>
</tr>
<tr>
<td>Rohit Kapur</td>
<td>Peter Wohl</td>
</tr>
<tr>
<td>Kuen-Jong Lee</td>
<td>Yervant Zorian</td>
</tr>
<tr>
<td>Sammy Makar</td>
<td></td>
</tr>
</tbody>
</table>

Steering Committee Awards

Meritorious Service Award

For major contributions and leadership of IEEE International Test Conference while serving as General Chair for 2021

Jennifer Dworak

Outstanding Contribution Award

For major contributions and leadership to IEEE International Test Conference while serving as Program Chair for 2021

Teresa McLaurin

Outstanding Contribution Awards

Outstanding Contribution Awards in recognition of service to the IEEE International Test Conference Steering Committee

<table>
<thead>
<tr>
<th>35 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy Gold</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Lowd</td>
<td></td>
</tr>
<tr>
<td>Jill Sibert</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Davidson</td>
<td></td>
</tr>
<tr>
<td>Gordon Roberts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron Press</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Years of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer Dworak</td>
<td></td>
</tr>
<tr>
<td>Li-C Wang</td>
<td></td>
</tr>
</tbody>
</table>
DIGITAL INDUSTRIES SOFTWARE

Engineer a smarter future faster with Siemens EDA

Engineers trust market leading Tessent Silicon Lifecycle Solutions to deliver a smarter future faster. At ITC 2022, Tessent showcases adaptive intelligence solutions, a new category of continuously learning applications.

siemens.com/eda
Visit Booth# 223 to Learn about Latest Test Technologies

BEYOND THE TECHNOLOGY HORIZON

WWW.ADVANTEST.COM
A world-class technology company, Advantest is the leading producer of automatic test equipment (ATE) for the semiconductor industry and a premier manufacturer of measuring instruments used in the design and production of electronic instruments and systems. Its leading-edge systems and products are integrated into the most advanced semiconductor production lines in the world. The company also focuses on R&D for emerging markets that benefit from advancements in nanotech and terahertz technologies and has introduced multi-vision metrology scanning electron microscopes essential to photomask manufacturing, as well as groundbreaking 3D imaging and analysis tools. Founded in Tokyo in 1954, Advantest established its first subsidiary in 1982 in the USA and now has subsidiaries worldwide. More information is available at www.advantest.com.

Chroma ATE, Inc.
7 Chrysler
Irvine, CA 92618
Phone: 949-421-0355 x128
Fax: 949-421-0353
http://www.chromaus.com

Chroma ATE Inc. is a world-leading designer and manufacturer of complete turn-key, IC thermal management and automated IC Handling solutions. Specializing in integrated and fully automated turn-key electronic test and MES solutions for the semiconductor, front and back-end test spaces. Chroma is driven to provide unique, tailored solutions, and technical support to help our US-based customers excel in today’s high demanding environment.
Cadence Modus DFT Software Solution
Intelligent System Test

Chroma
Driving Innovation to Success

Meet the Ever-changing Test Needs of Next-Gen Semiconductor Devices

SoC Test System
Tri-temp ATC Test Handler
Versatile Test Platform

www.chromaus.com
DR YIELD is the premier global provider of YieldWatchDog and the innovative leader in Big Data analytics. Our software, YieldWatchDog is the smart solution for semiconductor data visualization and automated process control. More specifically, YieldWatchDog is the powerful yield management software for the integration, advanced analysis and enhanced visualization of all chip manufacturing and test data. It is capable of recognizing patterns and automatically notifies you if any irregularities occur. Using patented data aggregation technology and advanced algorithms, YieldWatchDog quickly integrates even large amounts of data into one large-scale, highly compressed database. YieldWatchDog’s user-friendly and intuitive interface gives you deep insight into your data. YieldWatchDog is a customizable, fully scalable, turnkey solution that saves on engineering time and IT infrastructure costs. Visit our website for more information: https://dryield.com/

Ironwood Electronics
1335 Eagandale Court
Eagan, MN 55121
Phone: 952-229-8200
Fax: 952-229-8201
http://ironwoodelectronics.com

Booth 111
Includes 75 GHz bandwidth sockets for BGA and QFN, only slightly larger than IC with integral heatsink for medium power and optional heatsinking to over 100 watts. Up to 500k insertions. Adapters for prototype, package conversion, and more. Quick-Turn volume adapters are our specialty.

Micro Control Company
7956 Main Street NE
Minneapolis, MN 55432
Phone: 1-800-328-9923
http://www.microcontrol.com

Booth 222
Micro Control Company is the test with burn-in expert. Devices that successfully complete a burn-in cycle in a Micro Control burn-in with test system stimulation are proving significantly more reliable for long-term use. Electronic stimulation is applied during the burn-in cycle Stressing the devices during burn-in causes devices that are going to fail, to fail early. By monitoring the devices as they are detected and eliminated from the lot.

Roos Instruments, Inc.
2285 Martin Avenue, C
Santa Clara, CA 95050
Phone: (408) 748-8589
http://www.roos.com

Booth 210
Roos Instruments is the premier supplier of highly automated test solutions for wireless devices. Our system’s performance and technical expertise are the tools our customers rely on to meet the challenges of next generation products.
Fill in Your Exhibit Hall Passport for Prizes

All registered attendees will receive a passport in their conference bag. Get your passport stamped Tuesday and Wednesday while visiting exhibitor booths and at least one Corporate Forum session. Drop your completed passport into the collection box located in the exhibit hall, and be eligible for the drawing at 4:00 p.m. on Wednesday in the exhibit hall. You need not be present at the time of drawing to win.

Please see the full instructions included with your passport for details.
Siemens
8005 SW Boeckman Road
Wilsonville, OR 97070
Booth 115
Siemens is the technology and market leading provider of design-for-test solutions. With the industry’s only comprehensive hierarchical DFT offering, our solutions enable our customers to achieve the lowest cost of test, highest test quality, fastest yield ramps and meet the most rigorous functional safety requirements demanded by the automotive market's ISO 26262 standard.

Synopsys
690 E Middlefield Road
Mountain View, CA 94043
Phone: 650-584-5000
Fax: 650-584-4249
http://www.synopsys.com
Booth 306
The Synopsys TestMAX™ family offers unparalleled test quality and efficiency, with tight integration across the Synopsys Fusion Design Platform to enable faster turnaround time while uniquely meeting both design and test goals concurrently.

TESEC
1225 W. 190th Street, Suite 325
Gardena, CA 90248
Phone: 1-480-829-6879
http://www.tesecinc.com/
Booth 323
Tesec is a world leader in power semiconductor test and automation. We provide high-volume production and engineering test solutions for a variety of applications including High-Power & High-Reliability devices, MEMS, and WLCSP/Strip-Test. The leading provider of yield improvement.

TDK-Lambda
405 Essex Road
Neptune, NJ 07753
Phone: +1 732 922 9300
Fax: +1 732 922 1441
https://www.us.lambda.tdk.com/
Booth 227
Tesec is a world leader in power semiconductor test and automation. We provide high-volume production and engineering test solutions for a variety of applications including High-Power & High-Reliability devices, MEMS, and WLCSP/Strip-Test. The leading provider of yield improvement.
Test Spectrum
http://testsgpectrum.com/home/

Booth 226

Test Spectrum is a recognized leader in semiconductor test solutions. We provide software products that are essential tools for every test engineer and world class engineering services in test software and test hardware development. We are ITAR Certified.

Our customers include fabless semiconductor companies, integrated device manufacturers (IDMs), automated test equipment companies (ATE), test and assembly houses, and IP companies from all across the globe.

Founded in 1999 in Austin, Texas, Test Spectrum is an independent corporation with one goal in mind – to provide cutting edge technical solutions to the semiconductor test community. Our team is considered to have the best and brightest test development talent serving the semiconductor industry today.

TSE
http://www.tse21.com/

Booth 329

TSSI
920 SW Sixth Avenue
Portland, OR 97204
Phone: +1 503-764-2308
https://www.tessi.com/

Booth 317

Founded in 1979, TSSI is a worldwide leader in design-to-test conversion and validation software solutions. Our all-in-one graphical user interface allows all tools available at your fingertips, and data to be visualized throughout the vector translation process. Vector translation should not be a blind-conversion where extra steps are needed to even know whether the output patterns are correct. Also come to see how TSSI VirtualTester reduces silicon bring-up time from months to hours, and how 100% test patterns worked the first time. If visiting our physical booth in-person at Disneyland Hotel, come by to get a chance to win an Apple product!

Test Technology Technical Council
Phone: 540-937-8280
http://tab.computer.org/tttc

Booth 309

TTTC’s goals are to contribute to our members' professional development and advancement, to help them solve engineering problems in electronic test, and to help advance the state-of-the-art.

UNITES Systems
Phone: 503-555-1212
https://unites-systems.com/

Booth 324

UNITES Systems a.s. is on the market since 1991. Our main focus is on development and production of dedicated test and measurement systems, mainly ATE solutions for discrete semiconductors (such as MOSFETs, IGBTs, Diodes, BJTs and Power modules) with hundreds of installations worldwide. Recently with emphasis on SiC and GaN semiconductors. Apart from this, UNITES also develops and produce platforms for functional and in-circuit testing of assembled PCB testing (PCBA).
Versatile Power
743 Camden Ave.
Campbell, CA 95008
Phone: 408-341-4604
Fax: 408-341-4601
https://versatilepower.com

Booth 322
Versatile Power has a long history of designing robust power supplies for military, industrial, commercial, laboratory and medical applications. Founded in 2002, Versatile Power offers a line of standard power supplies as well as custom-design power solutions. All of our products are designed and manufactured in the US.

Xallent Inc.
https://xallent.com/

Booth 326
yieldHUB
https://www.yieldhub.com/

Booth 307
With today’s added pressures of time to market, along with the high cost of manufacturing, and material shortages, it’s never been a better time for semiconductor companies and fabless startups to invest in a yield management platform. yieldHUB was designed to offer modern automated solutions for all yield management challenges.

Smart engineering is at the core of our platform, which was built so engineers can easily access and analyze data with unrivaled speed and accuracy. As volume grows, yieldHUB users can analyze and stack hundreds and even thousands of wafers at the same time using our cloud product on a web browser. Your engineers will be able to monitor production from any device no matter where they are.

The yieldHUB platform offers exclusive and unique features to its customers, combined with intuitive design, innovative communication tools, and help from our team of highly experienced experts. We’ve helped improve the yield for manufacturers of 60 billion chips in the past year.

You could be just a few clicks away from having all your yield management problems solved by our team today. Visit www.yieldhub.com to get started.
Discover next-generation solutions for embedded instrument access

www.goepelusa.com

Enjoy Testing
Synopsys Test and Silicon Lifecycle Management (SLM) solutions encompass integrated tools, IP and methodologies to test, monitor and analyze SoCs, providing actionable insights at every phase of the device lifecycle.

To learn more visit:
www.synopsys.com/slM
www.synopsys.com/test
EXHIBITOR BOOTH LOCATIONS

<table>
<thead>
<tr>
<th>Company</th>
<th>Booth Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantest</td>
<td>223</td>
</tr>
<tr>
<td>Advanced Test Equipment Corp.</td>
<td>309</td>
</tr>
<tr>
<td>Caliber Interconnect</td>
<td>325</td>
</tr>
<tr>
<td>Chroma ATE, Inc.</td>
<td>315</td>
</tr>
<tr>
<td>D</td>
<td>R</td>
</tr>
<tr>
<td>Ironwood Electronics</td>
<td>111</td>
</tr>
<tr>
<td>Micro Control Company</td>
<td>222</td>
</tr>
<tr>
<td>Roos Instruments, Inc.</td>
<td>210</td>
</tr>
<tr>
<td>Siemens</td>
<td>115</td>
</tr>
<tr>
<td>Synopsys, Inc.</td>
<td>306</td>
</tr>
<tr>
<td>TDK-Lambda</td>
<td>227</td>
</tr>
<tr>
<td>TESEC</td>
<td>323</td>
</tr>
<tr>
<td>Test Spectrum</td>
<td>226</td>
</tr>
<tr>
<td>TSE</td>
<td>329</td>
</tr>
<tr>
<td>TSSI</td>
<td>317</td>
</tr>
<tr>
<td>TTTC</td>
<td>209</td>
</tr>
<tr>
<td>UNITES Systems</td>
<td>324</td>
</tr>
<tr>
<td>Versatile Power</td>
<td>322</td>
</tr>
<tr>
<td>Xallent Inc</td>
<td>326</td>
</tr>
<tr>
<td>YieldHUB</td>
<td>307</td>
</tr>
</tbody>
</table>

Table of Contents
Exhibits Floor Plan